Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 10(1): 8, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35090578

RESUMO

Multiple sclerosis (MS) is a disease of the central nervous system that is characterized by inflammation and focal areas of demyelination, ultimately resulting in axonal degradation and neuronal loss. Several lines of evidence point towards a role for microglia and other brain macrophages in disease initiation and progression, but exactly how lesion formation is triggered is currently unknown. Here, we characterized early changes in MS brain tissue through transcriptomic analysis of normal appearing white matter (NAWM). We found that NAWM was characterized by enriched expression of genes associated with inflammation and cellular stress derived from brain macrophages. Single cell RNA sequencing confirmed a stress response in brain macrophages in NAWM and identified specific microglia and macrophage subsets at different stages of demyelinating lesions. We identified both phagocytic/activated microglia and CAM clusters that were associated with various MS lesion types. These overall changes in microglia and macrophages associated with lesion development in MS brain tissue may provide therapeutic targets to limit lesion progression and demyelination.


Assuntos
Encéfalo/metabolismo , Doenças Desmielinizantes/metabolismo , Macrófagos/metabolismo , Esclerose Múltipla/metabolismo , Transcriptoma , Substância Branca/metabolismo , Animais , Encéfalo/patologia , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Feminino , Humanos , Macrófagos/patologia , Masculino , Camundongos , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Substância Branca/patologia
2.
Brain ; 138(Pt 9): 2537-52, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26169942

RESUMO

Spinocerebellar ataxia type 23 is caused by mutations in PDYN, which encodes the opioid neuropeptide precursor protein, prodynorphin. Prodynorphin is processed into the opioid peptides, α-neoendorphin, and dynorphins A and B, that normally exhibit opioid-receptor mediated actions in pain signalling and addiction. Dynorphin A is likely a mutational hotspot for spinocerebellar ataxia type 23 mutations, and in vitro data suggested that dynorphin A mutations lead to persistently elevated mutant peptide levels that are cytotoxic and may thus play a crucial role in the pathogenesis of spinocerebellar ataxia type 23. To further test this and study spinocerebellar ataxia type 23 in more detail, we generated a mouse carrying the spinocerebellar ataxia type 23 mutation R212W in PDYN. Analysis of peptide levels using a radioimmunoassay shows that these PDYN(R212W) mice display markedly elevated levels of mutant dynorphin A, which are associated with climber fibre retraction and Purkinje cell loss, visualized with immunohistochemical stainings. The PDYN(R212W) mice reproduced many of the clinical features of spinocerebellar ataxia type 23, with gait deficits starting at 3 months of age revealed by footprint pattern analysis, and progressive loss of motor coordination and balance at the age of 12 months demonstrated by declining performances on the accelerating Rotarod. The pathologically elevated mutant dynorphin A levels in the cerebellum coincided with transcriptionally dysregulated ionotropic and metabotropic glutamate receptors and glutamate transporters, and altered neuronal excitability. In conclusion, the PDYN(R212W) mouse is the first animal model of spinocerebellar ataxia type 23 and our work indicates that the elevated mutant dynorphin A peptide levels are likely responsible for the initiation and progression of the disease, affecting glutamatergic signalling, neuronal excitability, and motor performance. Our novel mouse model defines a critical role for opioid neuropeptides in spinocerebellar ataxia, and suggests that restoring the elevated mutant neuropeptide levels can be explored as a therapeutic intervention.


Assuntos
Cerebelo/patologia , Dinorfinas/genética , Regulação da Expressão Gênica/genética , Transtornos dos Movimentos/etiologia , Mutação/genética , Células de Purkinje/fisiologia , Degenerações Espinocerebelares , Potenciais de Ação/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Contagem de Células , Células Cultivadas , Modelos Animais de Doenças , Dinorfinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp , Transdução de Sinais/genética , Degenerações Espinocerebelares/complicações , Degenerações Espinocerebelares/genética , Degenerações Espinocerebelares/patologia , Sinapses/genética , Sinapses/patologia
3.
Cell Mol Life Sci ; 72(17): 3387-99, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25854634

RESUMO

The dominantly inherited cerebellar ataxias are a heterogeneous group of neurodegenerative disorders caused by Purkinje cell loss in the cerebellum. Recently, we identified loss-of-function mutations in the KCND3 gene as the cause of spinocerebellar ataxia type 19/22 (SCA19/22), revealing a previously unknown role for the voltage-gated potassium channel, Kv4.3, in Purkinje cell survival. However, how mutant Kv4.3 affects wild-type Kv4.3 channel functioning remains unknown. We provide evidence that SCA19/22-mutant Kv4.3 exerts a dominant negative effect on the trafficking and surface expression of wild-type Kv4.3 in the absence of its regulatory subunit, KChIP2. Notably, this dominant negative effect can be rescued by the presence of KChIP2. We also found that all SCA19/22-mutant subunits either suppress wild-type Kv4.3 current amplitude or alter channel gating in a dominant manner. Our findings suggest that altered Kv4.3 channel localization and/or functioning resulting from SCA19/22 mutations may lead to Purkinje cell loss, neurodegeneration and ataxia.


Assuntos
Mutação/genética , Células de Purkinje/metabolismo , Canais de Potássio Shal/metabolismo , Degenerações Espinocerebelares/genética , Análise de Variância , Cicloeximida , Primers do DNA/genética , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Mutagênese Sítio-Dirigida , Canais de Potássio Shal/genética
4.
PLoS One ; 10(3): e0116599, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25756792

RESUMO

Spinocerebellar ataxia type 13 (SCA13) is an autosomal dominantly inherited neurodegenerative disorder of the cerebellum caused by mutations in the voltage gated potassium channel KCNC3. To identify novel pathogenic SCA13 mutations in KCNC3 and to gain insights into the disease prevalence in the Netherlands, we sequenced the entire coding region of KCNC3 in 848 Dutch cerebellar ataxia patients with familial or sporadic origin. We evaluated the pathogenicity of the identified variants by co-segregation analysis and in silico prediction followed by biochemical and electrophysiological studies. We identified 19 variants in KCNC3 including 2 non-coding, 11 missense and 6 synonymous variants. Two missense variants did not co-segregate with the disease and were excluded as potentially disease-causing mutations. We also identified the previously reported p.R420H and p.R423H mutations in our cohort. Of the remaining 7 missense variants, functional analysis revealed that 2 missense variants shifted Kv3.3 channel activation to more negative voltages. These variations were associated with early disease onset and mild intellectual disability. Additionally, one other missense variant shifted channel activation to more positive voltages and was associated with spastic ataxic gait. Whereas, the remaining missense variants did not change any of the channel characteristics. Of these three functional variants, only one variant was in silico predicted to be damaging and segregated with disease. The other two variants were in silico predicted to be benign and co-segregation analysis was not optimal or could only be partially confirmed. Therefore, we conclude that we have identified at least one novel pathogenic mutation in KCNC3 that cause SCA13 and two additionally potential SCA13 mutations. This leads to an estimate of SCA13 prevalence in the Netherlands to be between 0.6% and 1.3%.


Assuntos
Canais de Potássio Shaw/genética , Canais de Potássio Shaw/metabolismo , Ataxias Espinocerebelares/genética , População Branca/genética , Adulto , Idoso , Simulação por Computador , Estudos de Associação Genética , Predisposição Genética para Doença , Células HeLa , Humanos , Pessoa de Meia-Idade , Mutação , Países Baixos , Análise de Sequência de DNA , Ataxias Espinocerebelares/metabolismo , Adulto Jovem
5.
Neurobiol Aging ; 35(9): 2147-60, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24799273

RESUMO

Aging is associated with reduced function, degenerative changes, and increased neuroinflammation of the central nervous system (CNS). Increasing evidence suggests that changes in microglia cells contribute to the age-related deterioration of the CNS. The most prominent age-related change of microglia is enhanced sensitivity to inflammatory stimuli, referred to as priming. It is unclear if priming is due to intrinsic microglia ageing or induced by the ageing neural environment. We have studied this in Ercc1 mutant mice, a DNA repair-deficient mouse model that displays features of accelerated aging in multiple tissues including the CNS. In Ercc1 mutant mice, microglia showed hallmark features of priming such as an exaggerated response to peripheral lipopolysaccharide exposure in terms of cytokine expression and phagocytosis. Specific targeting of the Ercc1 deletion to forebrain neurons resulted in a progressive priming response in microglia exemplified by phenotypic alterations. Summarizing, these data show that neuronal genotoxic stress is sufficient to switch microglia from a resting to a primed state.


Assuntos
Senilidade Prematura/genética , Senilidade Prematura/patologia , Envelhecimento/patologia , Distúrbios no Reparo do DNA/genética , Distúrbios no Reparo do DNA/patologia , Inflamação/patologia , Microglia/patologia , Animais , Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Endonucleases/genética , Lipopolissacarídeos , Camundongos Mutantes , Mutação , Fagocitose , Prosencéfalo/patologia
7.
Ann Neurol ; 72(6): 870-80, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23280838

RESUMO

OBJECTIVE: To identify the causative gene for the neurodegenerative disorder spinocerebellar ataxia type 19 (SCA19) located on chromosomal region 1p21-q21. METHODS: Exome sequencing was used to identify the causal mutation in a large SCA19 family. We then screened 230 ataxia families for mutations located in the same gene (KCND3, also known as Kv4.3) using high-resolution melting. SCA19 brain autopsy material was evaluated, and in vitro experiments using ectopic expression of wild-type and mutant Kv4.3 were used to study protein localization, stability, and channel activity by patch-clamping. RESULTS: We detected a T352P mutation in the third extracellular loop of the voltage-gated potassium channel KCND3 that cosegregated with the disease phenotype in our original family. We identified 2 more novel missense mutations in the channel pore (M373I) and the S6 transmembrane domain (S390N) in 2 other ataxia families. T352P cerebellar autopsy material showed severe Purkinje cell degeneration, with abnormal intracellular accumulation and reduced protein levels of Kv4.3 in their soma. Ectopic expression of all mutant proteins in HeLa cells revealed retention in the endoplasmic reticulum and enhanced protein instability, in contrast to wild-type Kv4.3 that was localized on the plasma membrane. The regulatory ß subunit Kv channel interacting protein 2 was able to rescue the membrane localization and the stability of 2 of the 3 mutant Kv4.3 complexes. However, this either did not restore the channel function of the membrane-located mutant Kv4.3 complexes or restored it only partially. INTERPRETATION: KCND3 mutations cause SCA19 by impaired protein maturation and/or reduced channel function.


Assuntos
Predisposição Genética para Doença , Mutação de Sentido Incorreto/genética , Canais de Potássio Shal/genética , Degenerações Espinocerebelares/genética , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , Estudos de Casos e Controles , Imunoprecipitação da Cromatina , Cicloeximida/farmacologia , Análise Mutacional de DNA , Progressão da Doença , Saúde da Família , Feminino , Estudos de Associação Genética , Genótipo , Células HEK293/metabolismo , Células HeLa/patologia , Humanos , Proteínas Luminescentes/genética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Técnicas de Patch-Clamp , Inibidores da Síntese de Proteínas/farmacologia , Coloração pela Prata , Degenerações Espinocerebelares/patologia , Fatores de Tempo , Transfecção
8.
FASEB J ; 22(12): 4136-45, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18697841

RESUMO

Neurons are highly polarized cells, and neuron-neuron communication is based on directed transport and release of neurotransmitters, neuropeptides, and neurotrophins. Directed communication may also be attributed to neuron-microglia signaling, since neuronal damage can induce a microglia reaction at specific sites only. However, the mechanism underlying this site-specific microglia reaction is not yet understood. Neuronal CCL21 is a microglia-activating chemokine, which in brain is solely found in endangered neurons and is therefore a candidate for neuron-microglia signaling. Here we present that neuronal CCL21 is sorted into large dense-core vesicles, the secretory granules of the regulated release pathway of neurons. Live-cell imaging studies show preferential sorting of CCL21-containing vesicles into axons, indicating its directed transport. Thus, mouse neurons express and transport a microglia activating factor very similar to signaling molecules used in neuron-neuron communication. These data show for the first time the directed transport of a microglia activating factor in neurons and corroborate the function of neuronal CCL21 in directed neuron-microglia communication.


Assuntos
Quimiocina CCL21/metabolismo , Vesículas Secretórias/metabolismo , Animais , Axônios/metabolismo , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Neurônios/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/biossíntese , Transdução de Sinais , Transfecção
9.
Mol Microbiol ; 53(6): 1583-99, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15341641

RESUMO

Most bacterial proteins destined to leave the cytoplasm are exported to extracellular compartments or imported into the cytoplasmic membrane via the highly conserved SecA-YEG pathway. In the present studies, the subcellular distributions of core components of this pathway, SecA and SecY, and of the secretory protein pre-AmyQ, were analysed using green fluorescent protein fusions, immunostaining and/or immunogold labelling techniques. It is shown that SecA, SecY and (pre-)AmyQ are located at specific sites near and/or in the cytoplasmic membrane of Bacillus subtilis. The localization patterns of these proteins suggest that the Sec machinery is organized in spiral-like structures along the cell, with most of the translocases organized in specific clusters along these structures. However, this localization appears to be independent of the helicoidal structures formed by the actin-like cytoskeletal proteins, MreB or Mbl. Interestingly, the specific localization of SecA is dynamic, and depends on active translation. Moreover, reducing the phosphatidylglycerol phospholipids content in the bacterial membrane results in delocalization of SecA, suggesting the involvement of membrane phospholipids in the localization process. These data show for the first time that, in contrast to the recently reported uni-ExPortal site in the coccoïd Streptococcus pyogenes, multiple sites dedicated to protein export are present in the cytoplasmic membrane of rod-shaped B. subtilis.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Transporte Proteico/fisiologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Bacillus subtilis/ultraestrutura , Proteínas de Bactérias/genética , Membrana Celular/química , Membrana Celular/metabolismo , Cloranfenicol/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Rifampina/farmacologia , Canais de Translocação SEC , Proteínas SecA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...